
VORTEX INSTABILITY OF NATURAL CONVECTION 

FLOW ON INCLINED SURFACES 

S. E. HAALAND d E. M. SPARROW 

Fluid Mechanics hogram, University of Minnesota, Minneapolis, Minnesota, U.S.A. 

(Received 10 January 1973 and in revisedfotm 25 May 1973) 

Abetmet-The linear stability of laminar natural convection flow adjacent to a heated, inclined, upward- 
facing plate is investigated for disturbances having the form of ~on~tu~~ vortices. The stability problem 
is formulated with account being taken of the fact that the basic flow and temperature frehh depend on the 
streamwise coordinate. One of the demonstrated consequences of retaining the transverse velocity of the 
basic flow is the so-called bottling effect, wherein the disturbance vorticity and temperature am contained 
wlthin the respective boundary layers of the basic flow. The calculated neutral stability curves exhibit an 
altogether different character depending upon whether the streamwise dependence of the basic flow and 
temperature fields is taken into account or suppressed; the magnitude of the critical Graabaf numbers 
from the two models differs by several orders of magnitude. The rest&s also show that the greater the 
inclination of the plate from the vertical, the more susceptible is the flow to the vortex-type instability. 

The relationship of the analytical results to available experimental information is dis&ssed. 

INTRODUCTION 

RELENT flow visualization experiments [1] on 
natural convection adjacent to a heated, inclined, 
upward-facing plate revealed that a secondary 
flow in the form of longitudinal vortices may 
occur owing to the instability of the basic two- 
dimensional laminar flow. The instability 
m~h~ism for such a secondary flow is the 
presence of a buoyancy force component in the 
direction normal to the plate surface. Earlier, 
Giirtler [2] and ICirchg%ssner [3] had identified 
the normal component of the buoyancy force as 
being res~nsibl~for the secondary-flow vortices 
adjacent to a heated, horizontal or slightly 
inclined, upward-facing plate situated in a 
forced convection flow. 

In this paper, the linear stability of laminar 
natural convection flow on a heated inclined 
plate is investigated for disturbances having the 
form of longitudinal vortices. The paper is 
drawn from the thesis of Haaland [4], which 
was concerned with the stability of the general 
class of flows where (a) the streamwise velocity 
vanishes in the free stream, and 0) the transverse 
velocity is inward directed and has a finite value 

in the free stream The natural convection flow 
on an inclined plate is a member of this class, 
which will hereafter be referred to as Class A 
flows. 

For Class A flows, the assumption that the 
basic flow can be treated as a parallel flow, 
which is the cornerstone of conventional linear 
stability theory, is not uniformly valid through- 
out the entire domain. in particular, the 
convection of disturbance quantities by the 
transverse velocity of the basic flow cannot be 
neglected. As will be demonstrated later for the 
inclined plate, the retention of the parallel flow 
assumption leads to significant errors in the 
stability results. 

The aforementioned transverse convection 
terms give rise to the so-called bottling effect, 
whereby the disturbance vorticity and tempera- 
ture are contained (i.e. bottled in) within the 
boundary layer of the basic flow. Owing to this 
containment, any Class A stability problem 
(including the inclined plate) which was pre- 
viously defined on an unbounded domain can 
now be defined on a bounded domain. 

In addition to accounting for the transverse 
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velocity of the basic flow, al1 other terms which 
arise directly from the x-dependence of the basic 
flow also will be included in the analysis. The 
latter terms are taken into account because their 
importance increases as the wave number- 
Reynolds number product becomes smaller. 

The disturbance equations are formulated 
in such a manner as to make them inde~~dent 
of the inclination angle of the plate. Subsequent 
to the demonstration of the bottling effect. 
neutral stability characteristics are determined 
for Prandtl numbers of 0733, 2 and 6.7 by 
employing a combined analytical-numerical 
solution method. These Prandtl numbers cover 
the range of gases, vapors, and liquid water. 
The thus-obtained stability results are compared 
with those based on the conventional parallel 
flow modeL Comparisons are made with experi- 
ment whenever possible. 

THE DISTURBANCE EQUATIONS 

The starting point for the derivation of the 
disturbance equations is the Boussinesq form 
of the conservation laws (e.g. Landau and 
Lifshitz 151). 

i?V 
‘;i; + v.vv= - ;vp - g/!?(T- T,) + vv2v; (1) 

v.v=o, (2) 

dT 

at 
+ V.VT= aV’T, (3) 

where V is the velocity vector, p the reduced 
pressure (static pressure minus hydrostatic 
pressure), g the gravity vector, T the tempera- 
ture, and T, the ambient temperature. The fluid 
properties, density p, thermal expansion co- 
efIicient p, kinematic viscosity v, and thermal 
diffisivity a are assumed to be constant. The 
derivation will follow that of Haaland [4]. 

If one takes the curl of equation (I), there is 
obtained after using the continuity equation (2) 
and introducing the vorticity Q = V x V 

at+ V.VJz -Q.VV=jIg x VT+ vV%!. (4) 

in a coordinate system where x is the streamwise 
direction (along the plate), y is in the transverse 
direction (normal to the plate), and z is in the 
spanwise direction, V= (0, I? @, $2 = fd,, 6, 
63. T= 5: and g = (gX, gp 0). With these, the 
x-component of the vorticity equation (4) 
becomes 

The basic flow is a two-dimensional boundary 
layer flow which.depends on x and y and is 
denoted by (U, V, 0), (O,O, fz), and T The 
disturbance Ilow will be characterized by (u. t’, w), 
(0, wY, o,), p and r. The disturbances are 
assumed to be non-oscillatory in x. Further- 
more, if amplified disturbances are assumed to 
grow in the x-direction, then an operational 
criterion for neutral stability is that the first 
derivative of all disturbance quantities with 
respect to x are zero. In addition, it will be 
assumed that the second-order derivatives of the 
disturbances with respect to x are small in the 
vicinity ofthe neutral curve, so that the boundary 
Iayer assumption can be used whereby d2/8x2 is 
neglected compared with Z2/ay2. In view of the 
foregoing and confining attention to neutral 
stability, the disturbances are taken to be 
independent of x. * Furthermore. it is known as 
an experimental fact that the secondary flow 
vortices (e.g. Giirtler vortices) are unchan~ng 
with time and periodic in the spanwise co- 
ordinate z. Consequently, the disturbance flow 
will be taken as a function of y and z. 

Introducing the sum of the basic flow and the 
disturbance flow into equation (5) subtracting 
out the basic flow vorticity equation, and 

* If stability characteristics away from the neutral cume 
were to be sought, then the x-dependence (and, therefore, 
the x-derivatives) of the disturbances would somehow have 
to be taken into account. 
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neglecting nonlinear terms in the disturbances. 
we get 

where, in equation (9 and thereafter, Vz is the 
Laplace operator in y and z. Consistent with 
the boundary layer model for the basic flow, 
5L- -aU@y. Also,o, = &.@zsince 8wf8x = 0. 
With these substitutions. equation (9 reduces to 

vaw av -+w--=&~+vv’0. (7) 
a~ ay 

which is a differential equation connecting the 
disturbance vorticity component o and the 
disturbance temperature z. 

Inasmuch as au/ax = 0, the disturbance 
velocity components u and w may be expressed 
in terms of a stream function + by 1) = -a$/&, 
w = a*/ay. Consequently, 

C?W 2~ ate a2+ 
w=y-z=iiyi+F. (f3 

The disturbance energy equation is deduced 
from (3) as 

aT a7 aeaT U,X+ V----= aV2r, ay a2 ay (9) 

where account has been taken of &/ax = 0. 
The u component is brought into the problem 
via the x-momentum equation for the 
disturbance 

dV atf a+ au 
-uy--+v----,--- 

OY aY GZ aY 

= - fig,7 + vv3.4 m 
in the derivation of which it has been noted that 
apjc?x = au/ax = 0. 

Equations (7)-(10) constitute a coupled system 

for the four disturbance quantities $, o, a and 7. 
All terms arising from the x-dependence of the 
basic flow and temperature fields have been 
retained. 

If the inclination of the plate is defined by the 
acute angle 19 between the plate surface and the 
vertical, then 

sx = -gc0se, gp= -gsin8, (1 I) 

where g is the magnitude of the gravity vector. 
By employing equation (1 l), the gravity com- 
ponents gX and gY can be eliminated from 
equations (7) and (10). 

The disturbance field is periodic in the 
spanwise coordinate z. Furthermore, as pre- 
viously discussed, the x-dependences have been 
neglected at the neutral curve. Consequently, 
the disturbance q~ntiti~ r@, w, r, u that appear 
in equations (7)-(10) are assumed to be locally 
of the form 

J, = &y) sin az, 0 ‘= U(J) sin dcz, (12a) 

7 = r(y) cos az, u = u(y) cos az. (12b) 

The quantity a is the wave number of the 
disturbance. 

Equations (12a) and (12b) are then substituted 
into equations (?)-(lO) and the indicated opera- 
tions performed. Before stating the outcome, 
dimensionless variables and parameters will be 
introduced along with the basic flow and 
temperature solutions. The scales for the non- 
dimensionahzation are motivated by an 
examination of the form of the basic flow 
solution. 

With respect to the basic flow, it is relevant 
first to discuss the influence of the buoyancy 
force in the direction normal to the plate 
surface. As shown in the Appendix, this buoyancy 
force induces a streamwise pressure gradient 
whose magnitude is of the order of (tan 0,)/R 
relative to the streamwise buoyancy force 
fR is a characteristic Reynolds number). In 
addition, the analysis of Kierkus [6J has 
demonstrated that for vertical and inclined 
plates, the boundary layer displacement effect 
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is of the order of l/R. Consequently, for plate 
inclination angles for which tan 8 - 1 or less, 
the effects of the induced pressure gradient and 
the boundary layer displacement are of the 
same order. Provided that R % 1, both effects 
are small and will, therefore, be neglected. 

Subject to the foregoing restrictions, the basic 
flow and temperature solutions can be written 
in the following form 

u*(x) - u = u*(x)f7cf(rj), v = - 
R(x) ‘(‘)’ 

where 

T = T, + (T, - T,) %‘c?x (13) 

and 

q = y/h(x), R = U*h/v, (14) 

Gr = flgcos&T, - Tm)x3/vz = R4/64. (15) 

The specific expressions for U*, 8,. . are given 
in the Appendix, equations (A.7)-(A.9). In the 
foregoing, u can be identified as a similarity 
variable based on the characteristic length h 
(proportional to the boundary layer thickness), 
whereas R is a Reynolds number based on h and 
on the characteristic velocity U*. The relation- 
ship between the Reynolds number R and the 
Grashof number is expressed by equation (15). 
Wherever gravity enters the basic flow solution, 
it is always as gcos 8. The quantity T, is the 
plate surface temperature. 

By making use of the scales U*, h, and 
(T, - T,) suggested by the basic flow and 
temperature solutions, the amplitudes of the 
disturbance quantities can be recast into non- 
dimensional forms as 

&rl) = 

(16) 

In addition, the wave number may be made 
dimensionless with respect to the length scale h 

Z = ah. (13 

Then, upon introducing equations (12) into 
the disturbance equations (7)-(10) and sub- 
sequently employing (13) (14). (16) and (17), one 
has, after dropping the tilde 

f$” - &p = 0. (18) 

w” -zxzg= -artane+(Vo)‘, (19) 

r” - a2t = - aPrRT4 + Pr(Vz’ - ~Tu), (20) 

& - z2u = - t - aRU’q5 + Vu’- V’u. (21) 

where the primes indicate differentiation with 
respect to q and Pr denotes the Prandtl number. 
Examination of the system (18H21) reveals that 
the inclination angle 0 appears as a parameter. 
This system can be made independent of 0 by 
employing new variables and parameters defined 
as 

iS=t?tanlil, K=Rtan& (22) 

Then, upon introduction of equation (22) into 
(18)-(21) and omitting the overbars, the final 
form of the disturbance equations is obtained 

ip” - &$ = w, (22) 

w”- a2co= -az+(Vo)‘, 124 

$1 - a2T = - aPrRT’& + Pr(Vr’ - ~Tu), (25) 

u” - a2u= -t-aRU’4+ Vu’-V’u. (26) 

Equations (23H26) contain several terms 
which would have been neglected had the 
conventional parallel flow assumption been 
made. These include (Vi)’ in equation (24), 
(Vu’ - Vu) in equation (26), and Pr Vz' in 
equation (25). Furthermore, since the parallel 
flow model implies that the x-dependence of the 
basic flow and temperature field can be neglected, 
the term PrqTu in equation (25) would have 
been omitted. Inasmuch as this term is the only 
place where u appears in equations (23>-(25), its 
omission would enable equation (26) to be 
deleted altogether from the system. 

The boundary conditions that u, u ( = - ?J//c?zJ, 

w(= &,b/d_v), and z vanish at the plate surface 
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and in the free stream can be restated as 

u=#=&=r= 0 at q=O and co. (27) 

The system (23)-(27) is homogeneous and, 
therefore, admits a trivial solution. To obtain a 
non-trivial solution, a normalizing condition is 
imposed, for instance, 

w(0) = 1. (28) 

Equations (27) and (28) contain nine conditions 
for the eighth-order system (23)-(26). Therefore, 
one of the parameters a, R has to be an eigen- 
value. In the present study, R was selected as the 
eigenvalue and a succession of values was 
assigned to CY., thereby yielding the neutral 
curve R = R(a). 

The solution method to be employed here 
uses analytica! solutions for large q in con- 
junction with numerical integration for inter- 
mediate and small 9. The large-q solutions will 
now be developed and will be subsequently 
applied in the demonstration of the bottling 
effect. 

LARGE-q SOLIJTKM‘S AND THE BOTTLING EFFEXT 

As a starting point for the development of a 
solution of equations (23$-(26) that is valid for 
large values of t, it is necessary to know the 
large-q solutions for the basic flow and tempera- 
ture. From equations (A.12) and (A.l3), it 
follows that for target), F = F, + F, and 
H = H,, where F, and H, are the fast terms of 
exponentially decreasing expansions which in- 
volve known constants that depend on the 
Prandtl number. Furthermore, from equation 
(A.9) 

u = F; S ur, (29a) 
V = - 3F, + (@I - 3F,) = V, + V,, (29b) 

T = H, = Ti, (29c) 
Large-? solutions for $I, w, t and u will now be 

sought in the form of a series of decreasing 
functions 
+=&+A,+ . . . . o=B,+B,+ . . . . 

7=c,+cz+ . . . . u=D,+D2+ . . . . (30) 

When equations (29) and (30) are 
into (23)-(26) and terms of like 
collected, one gets, to the first order 
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substituted 
order are 

LA 1 = B,, MB, = - acl, NC, = 0, 
MD, = - Gi 

and to the second order 

LA 2 = B,, MB, = - aCz c V$?; 

+ V;B,, 

NC2 = - aPrRT,k, + Pr(V,C’, 

- clD,)9 

MD2 = - C2 - aRU;A, + VIDl 

- v;D,, 

(31) 

(32a) 

(32b) 

(32~) 

where the operators L M, N and I) are given by 

L = D2 - a2, M = D2 - V,D - a’, (33a) 

N = D2 - V,PrD - a’, D = d/dq. Wb) 

There are four independent solutions of 
equations (31) and (32) which vanish at infinity. 
The solutions are designated by subscripts l-4. 
For the furst set of solutions 

& =ee- W +e-~~e-IYJPMJ, 

(CD,, r,, t(& = (br, b2, b&-fa+~Y=JP’)V, (34) 

in which the b,, b2 and b, are abbreviations for 
lengthy expressions which contain 1 V, 1, Pr, a, R 
and the known constants Gi of equations 
(A. 12) and (A. 13). For the second set of solutions 

#t=e -Vrj V,Il, 02 = e-l 

r2 ‘c e-(Y+lv~lPO~ 
9 

u2 -. mm {e-(Y+l”c&+)q, e-(Y+IvmlWJs 

For the third set of solutions 

-qe-lrl 

4b3 = I2 1 v, \2(Pr - 1)Pr’ 

-_ae-Aq 
@3 = dIV,/(Pr _ I)‘ T3 = e-“? 

-emA@ 

u3 = nl v, ((PT - 1)’ 

(35) 

(36) 
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For the fourth set of solutions 

c 4wLL)4-t4-ve -(Y+l”,POq 3 u4 ^ e-‘/7 . (37) 

The quantities ;’ and I that appear in the 
foregoing are 

2 = 1 V, !Pr/2 + J(VZ,PrZ/4 + a2). (38) 

An assessment will now be made of the 
relative rates at which the disturbance field and 
the basic Bow decay at large q. By employing 
equations (A.9), (A.12) and (A.13) and noting 
that G - ~?U/aq, one has for the basic flow 

Q, u N max [e-l”miq, e-tir=lP~], 

T ~ e - lV&+f. (39) 
The decay rates for the disturbance quantities 
CO, u and z are expressed by the just-derived 
equations (34)-(37). In employing these relations 
for comparison with (39), it is relevant to note 
that I > / V, 1 Pr and “J > 1 V, 1. The comparison 
of decay rates has to be made separately for 
Pr > 1 and Pr < 1. 

When Pr > 1, the following ratios can be 
formed 

0 max [e -(a+P’JR)~, e-~w, e-““, e-(y+l~&‘h] 
-4 --_--_ 
n e-l”& 

(@aI 

u max [e -kz+l”,lPrbl re-~7+I”41P~)11,e-r~‘e-m 
-C 1 
fa2 e-!v& 

WW 
z max [e -_(a+lY,IPrhl 

,e 
-(p+lV,IPr)q -14 

,e 1 -h 
T ,-I~QJlPv 

WC) 
From an examination of equations (40), it is 
seen that 

Furthermore, it is easily shown that the dis- 
turbance vorticity components oY and CO, decay 
at the same rate as does U; consequently, 

w,* Qr 
-. a rz -0 as q-+ ~1. (42) 

When Pr < 1.9 U, T- exp(-jV%/Prq)). By 
forming ratios similar to equations (40), one 
finds that the conclusions expressed by equations 
(41) and (42) continue to be valid. Moreover, 
since 52 and Tdecay at similar rates for Pr -c 1. 
it follows that (CO, CO,,, wz)/T and u/T also 
approach zero. 

Equations (41) and (42) show that the dis- 
turbance vorticity decays faster than the basic 
flow vorticity and that the disturbance tempera- 
ture decays faster than the basic flow 
temperature. This means that the disturbance 
vorticity and temperature fields are contained 
within the corresponding boundary layers of the 
basic flow; that is, the disturbance fields are 
bottled in. 

If the transverse velocity terms VJ/dy(o, T’, u) 
had been omitted from the disturbance 
equations, as in a conventional parallel flow 
model, then all disturbances would have decayed 
as exp ( --a$. For small values of cr, exp ( --a$ 
decays more slowly than do Sz, U and ?: so that 
the disturbances would not have been bottled in. 
It follows, therefore, that the inward-directed 
transverse velocity of the basic flow is responsible 
for the bottling effect. 

METHOD OF SOLUTION 

The details of the solution method have been 
described by Haaland [4], so that only a general 
outline need be presented here. The solution 
method involves the use of the large-q analytical 
solutions for #, o, r and u in conjunction with 
numerical integration at intermediate and small 
q. The large-q solutions furnish the starting 
values for the numerical integration of equations 
(23)-(26), which proceeds inward from some 
large value of q( = q*) toward the plate surface 

(V = 0). 
It can be seen from equations (34)_137) that for 

assigned values of Pr, a and R. the large-q solu- 
tions yield numerical values for 4, w. t, u and 
their derivatives at Q = q*. With cbl,wl, TV. u1 
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and their derivatives at )I* as starting values, 
equations (23x26) are numerically integrated 

to tl = 0. A second solution is then obtained by 
performing the numerical integration using 

$29 W23 527 u2 and their derivatives at q* as 
the starting values. Similarly, a third and a 
fourth solution are obtained by starting respec- 
tively with &, . . . and 4,+, . . . at ft*. 

The four solutions thus obtained are summed 
up, with each solution being multiplied by a 
constant. The constants are determined by 
employing the normalizing condition o(O) = 1 
along with three of the wall boundary conditions, 
say, 4(O) = 4’(O) = u(O) = 0. This leaves one 
wall boundary condition, t(O) = 0, which is 
satisfied only when R is an eigenvalue. The 
initial guess for R is refined iteratively by 
applying the Newton-Raphson method to the 
boundary condition r(O) = f(R). until the desired 
resultf(R) = 0 is obtained. 

DISTURBANCE EQUATIONS FOR PARALLEL 
FLOW MODEL 

For purposes of comparison, it is appropriate 
to obtain results from a formulation based on 
the conventional parallel flow model for the 
basic flow. The terms which would be deleted 
from the disturbance equations (23)-(26) on the 
basis of the parallel flow model have already 
been discussed in the paragraph that follows 
those equations. If those deletions are made, the 
disturbance equations become 

4” - a24 = w, w” - a20 I - ar, 

?‘I - a2r = - aPrRT’& (43) 

Upon elimination of w and r, one obtains 

(D2 - a’)‘$ = a’PrRT’4, (44) 

with boundary conditions 

4 = 4’ = (D2 - a2)2d =0 at r~ = 0 

and CL). (45) 

Outside the thermal boundary layer of the 
basic flow, T = 0. Consequently, the behavior 
of r$ at large q can be determined by wjlving 

(0’ - a2)3& = 0. The three solutions of this 
equation which vanish at infinity are 

4x = e-‘“, 42 = qe-“q, & = q2eba”. (46) 

These large-q solutions are employed to provide 
starting values at rj = q* for the numerical 
integration of equation W), which proceeds 
inward from q* to the wall (q = 0). The pro- 
cedure for finding the eigenvalues R is identical 
to that already discussed in connection with 
equations (23)--(26). 

RESULTS AND DISCUSSION 

Neutral stability results for Prandtl numbers 
of 0733,2 and 67 were obtained by solving the 
eigenvalue problem defined by equations (23)- 
(28). These Prandtl numbers cover the range for 
gases, vapors, and liquid water. The correspond- 
ing neutral stability curves are presented in Fig. 1. 
The ordinate variable is the dimensionless wave 
number d = ah and the abscissa variable is 
R tan 8. The Reynolds number R and .the 
characteristic length h are defmed by equations 
(14) and (A-7) respectively. In the interest of 
clarity, the h and R appearing in the ordinate 
and abscissa have been recast in terms of the 
familiar Grashof number Gr 

Gr = j?g cos NT, - Tob)x3/v2, (47) 

which contains the streamwise component of 
gravity g cos 8. Also appearing in Fig. 1 is a 
dashed line representing the neutral curve 
obtained by solving the eigenvalue problem 
(4+-o-(5) which corresponds to the parallel flow 
model for the basic flow. The dashed line is for 
Pr = 6.7. 

The most striking feature of Fig. 1 is the 
markedly different nature of the neutral curves 
which are respectively obtained when the non- 
parallelism of the basic flow is taken into 
account or suppressed. In the former case, the 
neutral curves exhibit both upper and lower 
branches and a minimum (i.e. critical) value of 
the Grashof number which occurs at a finite 
wave number. On the other hand, for the parallel 
flow model, the neutral curve does not have a 
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FIG. 1. Neutral stability diagram, dimensionless wave number vs Reynolds 
number. 

lower branch and the minimum Grashof number 
appears to occur at zero wave number. The 
magnitude of the minimum Grashof number 
from the parallel flow model is several orders of 
magnitude lower than that from the more 
complete model. Clearly, the accounting of the 
non-parallel nature of the basic flow has a lirst- 
order influence on the neutral stability 
characteristics. 

The influence of the plate inclination angle 8 
on the stability characteristics can be deduced by 
examining the solid curves of Fig. 1. If note is 
taken of the factor tan 8 which appears in the 
abscissa variable, it is apparent that the greater 
the inclination angle, the more susceptible is the 
flow to the vortex-type instability being in- 
vestigated here. On the other hand, since tan 0 
approaches zero as 8 approaches zero, flows 
adjacent to plates that are either vertical or 
nearly vertical are very stable with respect to vor- 
tex-type instabilities, and it is highly like that 
other forms of disturbance (e.g. plane waves) are 
responsible for the breakdown of laminar flow. 
These findings are in accord with experiment 173. 

The minimum values of R tan 0 are 23.5, 
26.7 and 29.6, respectively for Pr = 6.7, 2 and 
0.733. This is a remarkably small spread. 

considering the order of magnitude variation 
in the Prandtl number. By taking the fourth 
powers of the respective results for R tan 6 and 
multiplying by the corresponding Prandtl 
numbers, it is seen that the Grashof-Prandtl 
products are by no means constant. Actually. in 
the range investigated, the numerical values of 
the critical Grashof number depend less on 
Prandtl number than do the Grashof-Prandtl 
products (i.e. Rayleigh numbers). 

Whereas a wave number-Reynolds number 
diagram, such as Fig. 1, is a common vehicle 
for presenting stability results. it has some 
major deficiencies. First, the non-dimensional 
wave number is not, in itself, a measured 
quantity ; rather, it is the wavelength ,4 which 
can be determined from experiment. Second. 
the streamwise coordinate x appears in both the 
ordinate and abscissa variables. so that it is 
difficult to examine how disturbances of given 
wavelength behave as they move in the stream- 
wise direction. 

To facilitate an alternate presentation which 
avoids these drawbacks, it is convenient to 
define a characteristic length L* which is a 
constant in each particular physical situation 

L* = [fig cos e(T, - T&l-*. (48) 
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FIG. 2. Neutral stability diagram, wavelength vs Reynolds number 

Since A = 2n/a, it is easily shown that 

-j$ tan* 0 = 
27r(R tan o)* 

ah . 

With the aid of equation (49) the crh, 
diagram (Fig. 1) can be transformed 
diagram of /l(tan * B/L?) vs R tan 8. 

(49) 

Rtan0 
into a 

A plot of the neutral stability curves in such a 
diagram is given in Fig. 2. As before, the neutral 
curves have an altogether different character 
depending upon whether the non-parallelism of 
the basic flow is taken into account or suppressed. 

251 1 
“0 20 40 60 

8, de(l 

FIG. 3. Vortex instability data of [7J, R tan 6 vs 0. 

The experimental instability results of [7] will 
now be examined. The instability that was 
investigated resulted from natural disturbances. 
The experiments were performed using a heated 
plate situated in water, and instability was 
identified by the first appearance of vortex lines 
made visible by an electrochemical reaction. It 
was not possible to estimate the amount of 
amplification which might have occurred prior 
to the first appearance of the lines. 

The vortex instability data of the experiments, 
encompassing six angles of inclination between 
20 and 60 degrees, are shown in Fig. 3. For each 
angle of inclination, the mean value of many 
repeated readings is indicated along with the 
corresponding standard deviation. The mean 
values of R tan 8 ranged from 80 to 109. On the 
other hand, from the analytical results (Figs. 1 or 
2), the value of R tan 8 at the critical point is 
about 24 for the mean Prandtl number of about 
5.5 encountered in the experiments. The critical 
value of R tan 8 is substantially lower (by a 
factor ofabout four) than that marking detectable 
instability in the experiments of [7]. This is in 
accord with all known results for natural 
disturbances in boundary layer flows, where 
appreciable amplification is necessary before 
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any disturbances can be detected (e.g. [S], 
p. 507). Due to the scatter of the points in Fig. 3. 
no ciear conclusion can be made about the 
validity of using R tan 6 as a correlating para- 
meter for the onset of instability. 

There is no information given in [7] about 
the wavelengths of the observed vortex lines. 
Fragmentary information is reported in [l]. 
from which the present authors have calculated 
three values of ,4(tan’ 8/L*), namely 18, 19 and 
24. From Fig. 2, the value of n(tan* e/L*) lies in 
the range 17-18 for the Prandtl numbers of the 
experiment. This level of agreement between the 
critical wavelength and the experimentally ob- 
served wavelength is surprisingly good, especially 
in view of prior lack of agreement for other 
naturally disturbed boundary layer flows [8-lo]. 

Sufftcient data are not available to fully 
affirm the validity of the correlation /i(tan* Q/L*) 
= constant at the onset of instability. If the 
correlation holds, then n _ sin-* 6 and 
/I N (AT)-*. The examination of these 
dependencies of A on 6 and on ATawaits further 
experiments. 

Finally, one last observation will be made. 
In Fig. 4, the mean values of R from [7] are 
plotted as a function of the inclination angle 0. 
At inclinations of -10, 0 and 10 degrees, the 
observed instability was of the travelling wave 
type, whereas for larger angles, vortex instability 
was observed, It is seen that the points fall very 
nearly on a straight line. The fact that the data 
from both types of instability lie on a continu- 
ous straight line raises the possibility that the 
two instability types may coexist for a substantial 
range of angles. It remains for future experi- 
ments involving hot-wire equipment to exam- 
ine the just-discussed possible coexistence. A 
simple empirical formula for the observed 
onset of instability can be given as R = 330 - 
4.85 6 for Pr = 5.5. Also shown in the figure is a 
line R tan 0 = 24, which represents the critical 
Reynolds number for a Prandtl number of 5.5. 
The angular dependence of the critical Reynolds 
number curve is, evidently, very different from 
that of the experimental data. 

0 20 40 60 

0, deg 

FIG. 4. Instability data of [7]. R vs 0 

CONCLUDING REMARKS 

There is a certain similarity between the 
present problem and the problem of forced 
flow on curved plates, first treated by Gortler 
[ 111. In the latter problem, the disturbances are 
in the form of Tollmien-Schlichting waves for 
zero and small values of the curvature. For 
larger values of positive curvature (concave 
plate), the disturbances observed are no longer 
in the form of travelling waves but are in the 
form of steady longitudinal vortices (Gortler 
vortices). The instability in the latter case is due 
to the centrifugal force normal to the plate, 
which can be regarded as a body force. 

For the Giirtler problem, Himmerlin [12]. 
correcting the calculation of Gortler, also 
obtained a minimum value of the stability 
parameter (Giirtler number) at a zero wave 
number. In a later paper [ 131, he found that the 
minimum Gortler number occurs at a non-zero 
wave number when a term connected with the 
curvature is included. This term was neglected 
at first because it is small in comparison with 
another term inside the boundary layer. How- 
ever, in the outer portion of the boundary layer 
and outside the boundary layer, this was no 
longer true. Therefore, the neglect of this term 
was not uniformly valid throughout the entire 
domain of the problem. Hammerlin’s finding is 
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another example of a non-u~fo~ approxi- 
mation whose impact is more and more strongly 
felt as the wave number approaches zero. 
See also [14] for further comments on this 
approximation. 

A question might arise as to the possibility of 
using linear stability theory to predict a critical 
angle (or range of angles) at which the distur- 
bances change their character from travelling 
waves to longitudinal vortices as suggested by 
the experiments in [7]. Presumably, if one can 
obtain the value of R for the onset of instability 
as a function of angle of inclination for both 
types of disturbances, then one might assume 
that for any angle the disturbance with the 
lowest R value would be the one observed. 
However, as discussed above, in the case of 
natural disturbances there appears to be no 
correlation between the observed onset of 
instability and the critical R value of the neutral 
curve. Thus, the critical Reynolds number 
cannot be used for prediction of observed 
instability. If amplification curves were to be 
obtained, one could find the range of wave 
lengths that are amplified most strongly. Now- 
ever, there still is no rational way of deciding 
at which value of Reynolds number one might 
expect to observe instability in the presence of 
natural disturt>aaces. Therefore, it seems im- 
probable that the critical angle can be predicted 
theoretically, at least by treating each type of 
disturbance separately. A more promising ap 
preach to achieving such a prediction would be 
to treat the case in which the disturbances 
contain both longitudinal vortices and travelling 
waves. 
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APPENDIX 

The Basic Flow and Temperature Solutions 
With the usual boundary layer assumptions the governing 

equations for natural coovection adjacent to a heated, 
inclined, upward-facing plate are (e.g. Kierkus 163 

. 
o= -3: +&sin&T- T,), (A.3) 

(A4 

where, as noted in connection witb equation (1). p is the 
differena between the static pressure and tbe hydrostatic 
pressure f p = 0 outside the boundary layer). 
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With a view toward estimating the magnitude of the The functions F(q) and H(q) are the solutions of 
pressure gradient ~?p/Sx in equation (A.21 one can tirst 
estimate p from equation (A.3) as 

F”’ + 3FF” - 2F’ = + H = 0, H” + 3PrFH’ = 0. (A.10) 

F(0) = F’(0) = F’(co) = H(a) = 0. H(O) = 1. (A.1 1) 

(A.5) Equations (A.10) and (A.1 I) are readily recognized as the 

where 6 is the boundary layer thickness. Furthermore, if 
familiar governing equations for the vertical plate problem. 

dpjax - p/.x, then 
There are many numerical solutions of the system (A.lO), 

(A.1 1) in the literature. A more efficient solution method for 

Idp 6 
-- s -figsin NT-- T,). 
pl?x x 

such systems was devised by Haaland ([4], Chapter 6). the 

(A.6) main feature of which is the replacement of the given 
boundary conditions at 9 = x with other boundary 

Taking the ratio of this quantity to the buoyancy force in 
conditions at a finite value of 1. 

equation (AZ) yields (6/x) tan 0 and since 6/x - 1 JGri - 1 JR. 
Asymptotic solutions for F and H that are valid at large 

the ratio becomes (tan e/R. As long as tan6 4 1 and 
values of q can be developed as follows 

R 9 1, the pressure gradient term in equation (A.,?) can be 
neglected compared with the buoyancy term. 

F(q) = F, + Gie-‘F”n + G,e-3F=P’“. fA.12) 

The similarity solution for the system (A.l), (A.2) with H(q) = G3e-‘F=P’“, (A.13) 
dp/ax omitted, and (A.4) can be expressed as indicated in 
equations (13) and (14), where where G2 and C, are related by 

u*(x) = 4vc’x*. h(x) = xfjc. t.4.n 
G, = (3PrF,)‘(l - l/Pr)G,. (A.14) 

c = [fig cos e(T - T,)/4v2 -j*. (AX) 

@,) = F’, “(7) = (?lF’ - 30, Rs) = H. 
The constants F,, Gi, Gz and GJ were evaluated by employ- 

(A.9) ing the numerical solutions of equations (A.lO) and (A.1 1). 

INSTABILITE TOURBILLONNAIRE DE LA CONVECTION NATURELLE SUR 
DES SURFACES INCLINEES 

R&am&On ttudie la stabilitt lineaire de la convection naturelie laminaire adjacente a une plaque 
chauffee, inclinb, a face toumee vers le haut, pour des perturbations ayant la forme de tourbillons 
longitudinaux. Le probleme de stabilite est formult en tenant compte du fait que les champsde l’ecoulement 
principal et de temperature dependent des coordonnbs. 

Une des consequences d&non&s de la conservation de la vitesse transverse de l%coulement fondamental 
est l’effet appel6 de mise en bouteille, oti la vitesse de perturbation et la tempiratute sont contenues dans 
les couches limites respectives de I’ecoulement fondamental. Les courbes de stabilitk neutrc calculkes 
montrent nettement un caractere difftmc% suivant quc la depeudance des champs de I’koulement de base 
et de temperature est prise en compte ou supprimb; la valeurs du nombre de Grashof pour les deux 
mod&es diff2rent de plusieurs ordres de grandeur. Les r&ltats montrent auasi que plus l’inclinaison de la 
plaque est grande a partir de la verticale, plus l’ecoulement est sensible a l’instabilitl: de type tourbillonnaire. 
On discute l’expressioa analytique des risultats a partir des informations disponibles sur les ex@riences. 

WIRBEL-INSTABILITAT BE1 NATURLICHER KONVEKTION AN 
GENEIGTEN FL&HEN 

ZmammaaffDie lineare Stabilitst der laminaren natiirlichen Konvektions-Stromung an einer 
env&rmten, geneigten nach oben gerichteten HeizflHche wird filr Strcimungen untersucht, die die Form 
liingslaufender Wirbel haben. Das Stabilit&tsproblem wird unter Beriicksichtigung der Tatsache 
dargestellt, dass die Grundstr~mung und das Temperaturfeld van der stromtirts gerichteten Koordinate 
abhHngt. Eine der dargestellten Folgen beim Festhalten der Quergeschwindigkeit der Grundstramung 
ist der sogenannte Flascheneffekt, wobei StrBmungsverwirbehmg und Temperatur durch die betreffende 
Grenzschicht der GmndstrBmung erfasst werden. Die errechneten Kurven indiITerenter Stabilit%t zeigen 
grund&zlich unterschiedliches Verhalten, je nachdem, ob die AbbPngigkeit der Gtundstrbmung und der 
Temperaturfelder in Strbmungsrichtung beriicksichtigt o&r vemachlgssigt wird. Der Wert der krltischen 
Grashof-Zahl beider Modelle differiert urn einige Grossenordnungen. Die Ergebnisse zeigen au&, dass 
mit zunehmender Neigung der Platte gegentiber der Senkrechten die Empfmdlich.keit der Str6mung 
hinsichtlich der Wirbel-InstabilitBt steigt. Der Vergleich der analytischen Resultate mit verfbgbaren 

experimentellen Aussagen wird erortert. 
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BMXPEBAR HEYCTOn%IBOCTb I-IPH ECTECTBEHHOm KOHBEKIJklM Y 
HAKJIOHHbIX l-IOBEPXHOCTE%i 

AmoTPqaa-HqneAyeTcfi naaetiaan ycTollsHBocTb namHapHor0 noToKa npu ecTecTBenHoll 

KOHFw.?K~AIl Hu HarpeTOi HaKJlOAHO~ nJlaCTUHOfi B CJlflae BOEiMyIQeHSiti B BKae IlpO~OJlbHbIX 

BKxpeti. 3anaqa yCT08WBOCTU $OpMyJIHpyeTCJJ C yqeTOM aaBWCKYOCTB OCHOBHOI'O IlOTOKa 

A TeMlIepaTypHOl'O nOJlR OT KOOp~KFIaTbl, HanpasseHHoB Bnonb TeqeHm. llonaamo, wo 

O~iIKM~~yC~OB~~COXpaHeHKUnO~epePHO~CKOpOCTKOCHOBHO~OnOTOKa~BJIIIeTC~CCHTya~UII, 

HOrna BMXpH BO8My~eHWi El TeMllepaTypa BOEUdyI.QeHHl? 8aKJIiOSeHbI B COOTBeTCTByIOJlWX 

IlOrpaHH'fHbIX CJIOf?X OCHOBROI'O nOTOKa. Pacqemhle HetiTpanbme KpKBble ~CTO~~PWBOCT~I 

B UeJlOM WMelOT paF3JIWiHbli% XapaKTep B 3aBBCElPOCTSi OT TOI'O, yWiTbIBaeTCIi HJIB npeHe6pe- 

raeTcR aamcKKocTbm OCHOBHOFO noToKa H TemnepaTypmx nonei 0T npononbHoi 

KoopwAaTbl; BenuwHa KpKTmecKux wcen rpacro$a mm myx naoaeizeti 0TmqaeTcsi Ha 

HeCKOJlbKO nOpXAKOB. PeSyJIbTaTbl TaK?Ke nOKa%IBaIOT, '4TO 'IeM 6OJlbUIe IlJlaCTHHa OT 

KJlOAfIeTCX OT BepTKKanK, TeM donee BOCllpliKMWiB nOTOK K BHXpeBOi HeyCTOfiWBOCTK. 

IIpnBoAuTcFf conocTameHHe peaynbTaToB aHanuaa c meio~mwic~ aKcnepmenTammbndK 


