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Abstract—The linear stability of laminar natural convection flow adjacent to a heated, inclined, upward-
facing plate is investigated for disturbances having the form of longitudinal vortices. The stability problem
is formulated with account being taken of the fact that the basic flow and temperature fields depend on the
streamwise coordinate, One of the demonstrated consequences of retaining the transverse velocity of the
basic flow is the so-called bottling effect, wherein the disturbance vorticity and temperature are contained
within the respective boundary layers of the basic flow. The calculated neutral stability curves exhibit an
altogether different character depending upon whether the streamwise dependence of the basic flow and
temperature fields is taken into account or suppressed; the magnitude of the critical Grashof numbers
from the two models differs by several orders of magnitude. The results also show that the greater the
inclination of the plate from the vertical, the more susceptible is the flow to the vortex-type instability.
The relationship of the analytical results to available experimental information is disCussed.

INTRODUCTION

REecenT flow visualization experiments [1] on
natural convection adjacent to a heated, inclined,
upward-facing plate revealed that a secondary
flow in the form of longitudinal vortices may
occur owing to the instability of the basic two-
dimensional laminar flow. The instability
mechanism for such a secondary flow is the
presence of a buoyancy force component in the
direction normal to the plate surface. Earlier,
Gortler [2] and Kirchgissner [3] had identified
the normal component of the buoyancy force as
being responsible for the secondary-flow vortices
adjacent to a heated, horizontal or slightly
inclined, upward-facing plate situated in a
forced convection flow.

In this paper, the linear stability of laminar
natural convection flow on a heated inclined
plate is investigated for disturbances having the
form of longitudinal vortices. The paper is
drawn from the thesis of Haaland [4], which
was concerned with the stability of the general
class of flows where (a) the streamwise velocity
vanishes in the free stream, and (b) the transverse
velocity is inward directed and has a finite value

in the free stream. The natural convection flow
on an inclined plate is a member of this class,
which will hereafter be referred to as Class A
flows.

For Class A flows, the assumption that the
basic flow can be treated as a parallel flow,
which is the cornerstone of conventional linear
stability theory, is not uniformly valid through-
out the entire domain. In particvlar, the
convection of disturbance quantities by the
transverse velocity of the basic flow cannot be
neglected. As will be demonstrated later for the
inclined plate, the retention of the parallel flow
assumption leads to significant errors in the
stability results.

The aforementioned transverse convection
terms give rise to the so-called bottling effect,
whereby the disturbance vorticity and tempera-
ture are contained (i.e. bottled in) within the
boundary layer of the basic flow. Owing to this
containment, any Class A stability problem
(including the inclined plate) which was pre-
viously defined on an unbounded domain can
now be defined on a bounded domain.

In addition to accounting for the transverse
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velocity of the basic flow, all other terms which
arise directly from the x-dependence of the basic
flow also will be included in the analysis. The
latter terms are taken into account because their
importance increases as the wave number—
Reynolds number product becomes smaller.

The disturbance equations are formulated
in such a manner as to make them independent
of the inclination angle of the plate. Subsequent
to the demonstration of the bottling effect.
neutral stability characteristics are determined
for Prandtl numbers of 0-733, 2 and 67 by
employing a combined analytical-numerical
solution method. These Prandt! numbers cover
the range of gases, vapors, and liquid water.
The thus-obtained stability results are compared
with those based on the conventional parallel
flow model. Comparisons are made with experi-
ment whenever possible.

THE DISTURBANCE EQUATIONS

The starting point for the derivation of the
disturbance equations is the Boussinesq form
of the conservation laws (e.g. Landau and
Lifshitz [5]).

%-‘;-{'- V.YV = -—%Vp—yB(T—- T,) + vW2V.(1)
V.V=0, 2
g_T+ V.VT = aVT, 3)

t

where Vis the velocity vector, p the reduced
pressure (static pressure minus hydrostatic
pressure), g the gravity vector, T the tempera-
ture, and T the ambient temperature. The fluid
properties, density p, thermal expansion co-
efficient B, kinematic viscosity v, and thermal
diffusivity a are assumed to be constant. The
derivation will follow that of Haaland [4].

If one takes the curl of equation (1), there is
obtained after using the continuity equation (2)
and introducing the vorticity 2 =V x V

%‘tz +V.VR —Q.VV=_L0g x VT+ W3R (4
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In a coordinate system where x is the sireamwise
direction (along the plate), y is in the transverse
direction (normal to the plate), and z is in the
spanwise direction, ¥=(0, V. W), 2 = Q.. 4,
Q2). T=T and g = (g,, g,, 0). With these, the
x-component of the vorticity equation (4)
becomes
30,

-6—‘-?-’54- UCQ"+ V= 4+ Waf)"
ot ox dy cz

~ 60 ~o0 80
Y 1P B, TEAARY, Jhd
(‘8x+g”6y+gzaz>

= ﬂg,ﬂg + Wi, (9

The basic flow is a two-dimensional boundary
layer flow which depends on x and y and is
denoted by (U, ¥ 0), (0.0.Q). and T The
disturbance flow will be characterized by {(u. v, w),
(w, wy, w;), p and 1. The disturbances are
assumed to be non-oscillatory in x. Further-
more, if amplified disturbances are assumed to
grow in the x-direction, then an operational
criterion for neutral stability is that the first
derivative of all disturbance quantities with
respect to x are zero. In addition, it will be
assumed that the second-order derivatives of the
disturbances with respect to x are small in the
vicinity of the neutral curve, so that the boundary
layer assumption can be used whereby ¢2/0x* is
neglected compared with 62/8y®. In view of the
foregoing and confining attention to neutral
stability, the disturbances are taken to be
independent of x.* Furthermore, it is known as
an experimental fact that the secondary flow
vortices {e.g. Gortler vortices) are unchanging
with time and periodic in the spanwise co-
ordinate z. Consequently, the disturbance flow
will be taken as a function of y and z.

Introducing the sum of the basic flow and the
disturbance flow into equation (5), subtracting
out the basic flow vorticity equation, and

* If stability characteristics away from the neutral curve
were to be sought, then the x-dependence (and, therefore,
the x-derivatives) of the disturbances would somehow have
to be taken into account.
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neglecting nonlinear terms in the disturbances.
we get

+2U
¥ ay

ot
= ﬁgy 52- + VVZ(D N

Ve Qo —w——w

©

where, in equation (6) and thereafter, V? is the
Laplace operator in y and z. Consistent with
the boundary layer model for the basic flow,
Q = —~0U/0y. Also,w, = du/0zsince dw/0x = 0.
With these substitutions. equation (6) reduces to

Va——m + an=

at 2
ay 5; ﬁg,.é-; +wWe, (7)

which is a differential equation connecting the
disturbance vorticity component w and the
disturbance temperature 1.

Inasmuch as du/dx = 0, the disturbance
velocity components v and w may be expressed
in terms of a stream function ¢ by v = —dy/dz,
w = 0y/0y. Consequently,

®

The disturbance energy equation is deduced
from (3) as

®

where account has been taken of dt/dx = 0.
The u component is brought into the problem

via the x-momentum equation for the
disturbance
Oy dy ¢z dy
= ~ fBg,1 + W  (10)

in the derivation of which it has been noted that
Op/8x = dufdx = 0.
Equations (7)~(10) constitute a coupled system
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for the four disturbance quantities ¥, o, u and 1.
All terms arising from the x-dependence of the
basic flow and temperature fields have been
retained.

If the inclination of the plate is defined by the
acute angle 0 between the plate surface and the
vertical, then

3Y)

where g is the magnitude of the gravity vector.
By employing equation (11), the gravity com-
ponents g, and g, can be eliminated from
equations (7) and (10).

The disturbance field is periodic in the
spanwise coordinate z. Furthermore, as pre-
viously discussed, the x-dependences have been
neglected at the neutral curve. Consequently,
the disturbance quantities ¥, w, 1, u that appear
in equations (7)~10) are assumed to be locally
of the form

¥ = ¢(y)sinaz,

T = 1(y) cos oz,

gy = —gcosh, g,= —gsinb,

(12a)
(12b)

w = o{y)sin az,

u = u(y) cos oz.

The quantity a is the wave number of the
disturbance.

Equations (12a) and (12b) are then substituted
into equations (7)10) and the indicated opera-
tions performed. Before stating the outcome,
dimensionless variables and parameters will be
introduced along with the basic flow and
temperature solutions. The scales for the non-
dimensionalization are motivated by an
examination of the form of the basic flow
solution.

With respect to the basic flow, it is relevant
first to discuss the influence of the buoyancy
force in the direction normal to the plate
surface. As shown in the Appendix, this buoyancy
force induces a streamwise pressure gradient
whose magnitude is of the order of (tan §)/R
relative to the streamwise buoyancy force
(R is a characteristic Reynolds number). In
addition, the analysis of Kierkus [6] has
demonstrated that for vertical and inclined
plates, the boundary layer displacement effect
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is of the order of 1/R. Consequently, for plate
inclination angles for which tan 8 ~ 1 or less,
the effects of the induced pressure gradient and
the boundary layer displacement are of the
same order. Provided that R » 1, both effects
are small and will, therefore, be neglected.

Subject to the foregoing restrictions, the basic
flow and temperature solutions can be written
in the following form

U=Ux00m, V= ‘gi’)‘) 708
T=T,+(T,~T)Tw). (13
where
n = y/h(x), R = U*h/v, (14)
and
Gr = Bgcos (T, — T )x3/v? = R*/64. (15)

The specific expressions for U*, U, ... are given
in the Appendix, equations (A.7)-(A.9). In the
foregoing, n can be identified as a similarity
variable based on the characteristic length h
(proportional to the boundary layer thickness),
whereas R is a Reynolds number based on i and
on the characteristic velocity U*. The relation-
ship between the Reynolds number R and the
Grashof number is expressed by equation (15).
Wherever gravity enters the basic flow solution,
it is always as gcos 8. The quantity T,, is the
plate surface temperature.

By making use of the scales U* h, and
(T,, — T,,) suggested by the basic flow and
temperature solutions, the amplitudes of the
disturbance quantities can be recast into non-
dimensional forms as

% am=-2

(n)

-~ T _()_u
=T, -1, TS~

In addition, the wave number may be made
dimensionless with respect to the length scale h

an

(16)

X% = ah.
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Then, upon introducing equations (12) into
the disturbance equations (7){10) and sub-
sequently employing (13), (14). (16) and (17), one
has, after dropping the tilde

¢ — 2*¢p = o,

(D” — 12

(18)
w= —ortan 8 + (Vw), (19
v — a’t = —aPrRT ¢ + Pr(Vi' —nTw), (20)
W —a2*u=—1—aRU¢G +W—-Vu (2D

where the primes indicate differentiation with
respect to n and Pr denotes the Prandt] number.
Examination of the system (18)—(21) reveals that
the inclination angle 6 appears as a parameter.
This system can be made independent of 8 by
employing new variables and parameters defined
as

T
i=1dtanh, R =Rtané. 22)

Then, upon introduction of equation (22) into
(18)~(21) and omitting the overbars, the final
form of the disturbance equations is obtained

b — 22 = w, (23)
W' - 2w = —at + (Voy, (24)
7" —a’t = —aPrRT ¢ + PriVt’ —nT'w), (25)
W —o*u= —1t—aRUG + W — Vu (26

Equations (23)«26) contain several terms
which would have been neglected had the
conventional parallel flow assumption been
made. These include (Vw) in equation (24),
(W -~ V'u) in equation (26), and Pr¥t’ in
equation (25). Furthermore, since the parallel
flow model implies that the x-dependence of the
basic flow and temperature field can be neglected,
the term PrpTu in equation (25) would have
been omitted. Inasmuch as this term is the only
place where u appears in equations (23}+25), its
omission would enable equation (26) to be
deleted altogether from the system.

The boundary conditions thatu,v(= — Cy/62),
w(= 0y/d), and t vanish at the plate surface
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and in the free stream can be restated as
u=¢=¢=1=0 at n=0 and co. 27)

The system (23){27) is homogeneous and,
therefore, admits a trivial solution. To obtain a
non-trivial solution, a normalizing condition is
imposed, for instance,

o) = 1. (28)

Equations (27) and (28) contain nine conditions
for the eighth-order system (23)-(26). Therefore,
one of the parameters «, R has to be an eigen-
value. In the present study, R was selected as the
eigenvalue and a succession of values was
assigned to «, thereby yielding the neutral
curve R = R(a).

The solution method to be employed here
uses analytical solutions for large 5 in con-
junction with numerical integration for inter-
mediate and small . The large-n solutions will
now be developed and will be subsequently
applied in the demonstration of the bottling
effect.

LARGE-y SOLUTIONS AND THE BOTTLING EFFECT

As a starting point for the development of a
solution of equations (235-(26) that is valid for
large values of n, it is necessary to know the
large-n solutions for the basic flow and tempera-
ture. From equations (A.12) and (A.13), it
follows that for large-n, F=F_+ F; and
H = H,, where F, and H, are the first terms of
exponentially decreasing expansions which in-
volve known constants that depend on the
Prandtl number. Furthermore, from equation
(A9

U=F, =U,, (29a)
V=—3F,+WF,—=3F)=V, +V, (29b)
T=H,=T,. (29¢)

Large-n solutions for ¢, w, T and u will now be
sought in the form of a series of decreasing
functions
¢=A;+A;+..., =B, +B,+...,

TgC1+C2+..., (30)

u=D;+D2+....
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When equations (29) and (30) are substituted
into (23)26) and terms of like order are
collected, one gets, to the first order

LA, =B,, MB;= —aC,, NC,=0,
MD, = -G, (31)
and to the second order
LA, = B,, MB, = —0oC, + V,B;
+ VB, (32a)
NC, = — aPrRT,A, + Pr(V,C,
-nTyDy),  (32b)
MD, = — C, — aRU A, + V\ D]
—ViD,, (320

where the operators L, M, N and D are given by
L=D*—~a® M=D*-V_,D—o? (332
N=D?>-V PrD—a> D=d/dn. (33b)
There are four independent solutions of

equations (31) and (32) which vanish at infinity.

The solutions are designated by subscripts 1-4.

For the first set of solutions

6, = e~ 4e-eQ[e~ ¥ =IPm],

(@, Ty, u;) = (by, by, by)e~ @ V=lPin (34

in which the b,, b, and b; are abbreviations for
lengthy expressions which contain |V, |, Pr,z, R
and the known constants G; of equations
(A.12) and (A.13). For the second set of solutions

="V ], wy=e"",
tz ~ e“(7+'vmtpr)"’

#y ~ max [e-(7+IValPr)», e-(v'*l"ml)n]. (35)
For the third set of solutions
_.ae-'lﬂ
s = A2V PPr - nPr
— —ae” M —an
O = AvaEr = BT
-C-A"
“Evier—ny @9
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For the fourth set of solutions
]
Pa~Wy~Ty~ e‘(?“'l"ml?r)n’ ug=e " (37

The quantities 7
foregoing are
v = |Vol/2 + J(V2/4 + a?),
A=|ValPri2 + J(VAPr4 + 3. (38)
An assessment will now be made of the
relative rates at which the disturbance field and
the basic flow decay at large 5. By employing

equations (A.9), (A.12) and (A.13) and noting
that @ ~ dU/0n, one has for the basic flow

Q‘ U ~ max [e'lymz’!‘ e"!"xil’m},
T~ e—quelPrn.

and A that appear in the

(39
The decay rates for the disturbance quantities
w, u and 1 are expressed by the just-derived
equations (34)+37). In employing these relations
for comparison with (39), it is relevant to note
that 1 > |V,|Prand y > |V, |. The comparison
of decay rates has to be made separately for
Pr>1land Pr < 1.

When Pr > 1, the following ratios can be
formed

w max [e—(a'f'lelPr)n, e ™ e M e*(vHleP')ﬂ]

Q e~ Vxin ’
(40a)

4 max [e"(‘sz'lVaoIP')’l’ e—(7+|Vler)n’e-An‘e~*m]

Q~ e V=it ’
(40b)

T max [e-‘a”'IVun]P"m‘ e VaolPrin e—»-rr]

?" ~ e‘!"wti‘rrx '
(40c)

From an examination of equations (40), it is
seen that

w u

@ o xoz 4
Qo o T (41)

0 as n— oo

Furthermore, it is easily shown that the dis-
turbance vorticity components w, and w, decay
at the same rate as does u: consequently,
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W, .
-, — =0 as

o 0 n - . (42

When Pr < 1.Q, U, T~ exp(—|V,|Prn). By
forming ratios similar to equations (40), one
finds that the conclusions expressed by equations
{41) and {42) continue to be valid. Moreover,
since £ and Tdecay at similar rates for Pr < 1.
it follows that (w, w, @ )T and wT also
approach zero.

Equations {41) and {42) show that the dis-
turbance vorticity decays faster than the basic
flow vorticity and that the disturbance tempera-
ture decays faster than the basic flow
temperature. This means that the disturbance
vorticity and temperature fields are contained
within the corresponding boundary layers of the
basic flow; that is, the disturbance fields are
bottled in.

If the transverse velocity terms Vd/dp(w, T, u)
had been omitted from the disturbance
equations, as in a conventional paralle! flow
model, then all disturbances would have decayed
as exp(—an). For small values of o exp(-—an)
decays more slowly than do @, U and T, so that
the disturbances would not have been bottled in.
It follows, therefore, that the inward-directed
transverse velocity of the basic flow is responsible
for the bottling effect.

METHOD OF SOLUTION

The details of the solution method have been
described by Haaland [4], so that only a general
outline need be presented here. The solution
method involves the use of the large-n analytical
solutions for ¢, w, T and u in conjunction with
numerical integration at intermediate and small
n. The large-n solutions furnish the starting
values for the numerical integration of equations
(23)(26), which proceeds inward from some
large value of n(=n*) toward the plate surface
(n = 0).

1t can be seen from equations (34)-(37) that for
assigned values of Pr, « and R, the large-n solu-
tions yield numerical values for ¢, w. 7, u and
their derivatives at n = np* With ¢, 0, 7, uy
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and their derivatives at n* as starting values,
equations (23)26) are numerically integrated
to n = 0. A second solution is then obtained by
performing the numerical integration using
¢, W, Ty, 4, and their derivatives at n* as
the starting values. Similarly, a third and a
fourth solution are obtained by starting respec-
tively with ¢,,...and ¢, ...at n*.

The four solutions thus obtained are summed
up, with each solution being multiplied by a
constant. The constants are determined by
employing the normalizing condition «{0) = 1
along with three of the wall boundary conditions,
say, ¢(0) = ¢'(0) = u(0) = 0. This leaves one
wall boundary condition, 7(0) = 0, which is
satisfied only when R is an eigenvalue. The
initial guess for R is refined iteratively by
applying the Newton—Raphson method to the
boundary condition t(0) = f(R), until the desired
result f(R) = 0 is obtained.

DISTURBANCE EQUATIONS FOR PARALLEL
FLOW MODEL
For purposes of comparison, it is appropriate
to obtain results from a formulation based on
the conventional paralle]l flow model for the
basic flow. The terms which would be deleted
from the disturbance equations (23)-(26) on the
basis of the parallel flow model have already
been discussed in the paragraph that follows
those equations. If those deletions are made, the
disturbance equations become

¢ —alp=0w o —dlw=-ar,
" —alt= —aPrRT'¢. (43)
Upon elimination of w and 1, one obtains
(D* — a?)*¢p = a*PrRT ¢, (44)
with boundary conditions
¢p=¢'=D*-a®?p=0 at n=0
and oc. 45)

Outside the thermal boundary layer of the
basic flow, T' = 0. Consequently, the behavior
of ¢ at large n can be determined by -olving
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(D* — a®)3¢ = 0. The three solutions of this
equation which vanish at infinity are

br=e€" =1 ¢y =n7e""". (46)

These large-n solutions are emploved to provide
starting values at n = n* for the numerical
integration of equation (44), which proceeds
inward from n* to the wall (n = 0). The pro-
cedure for finding the eigenvalues R is identical
to that already discussed in connection with
equations (23)—(26).

RESULTS AND DISCUSSION

Neutral stability results for Prandtl numbers
of 0-733, 2 and 67 were obtained by solving the
eigenvalue problem defined by equations (23)-
{28). These Prandtl numbers cover the range for
gases, vapors, and liquid water. The correspond-
ing neutralstability curves are presented in Fig. 1.
The ordinate variable is the dimensionless wave
number & = ah and the abscissa variable is
Rtan 6. The Revnolds number R and the
characteristic length h are defined by equations
(14) and (A.7) respectively. In the interest of
clarity, the h and R appearing in the ordinate
and abscissa have been recast in terms of the
familiar Grashof number Gr

Gr = Bgcos KT, — Tz )x*/v2, (47)

which contains the streamwise component of
gravity gcos 6. Also appearing in Fig. 1 is a
dashed line representing the neutral curve
obtained by solving the eigenvalue problem
(44)-(45) which corresponds to the parallel flow
model for the basic flow. The dashed line is for
Pr=67.

The most striking feature of Fig. 1 is the
markedly different nature of the neutral curves
which are respectively obtained when the non-
parallelism of the basic flow is taken into
account or suppressed. In the former case, the
neutral curves exhibit both upper and lower
branches and a minimum (i.e. critical) value of
the Grashof number which occurs at a finite
wave number. On the other hand, for the parallel
flow model, the neutral curve does not have a
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e
)

alZx/Gr

ah=

Q 20 40
A1an8 = 6r"(2/2 tan8)

60 80 100 120

Fi1G. 1. Neutral stability diagram, dimensionless wave number vs Reynolds
number.

lower branch and the minimum Grashof number
appears to occur at zero wave number. The
magnitude of the minimum Grashof number
from the parallel flow model is several orders of
magnitude lower than that from the more
complete model. Clearly, the accounting of the
non-parallel nature of the basic flow has a first-
order influence on the neutral stability
characteristics.

The influence of the plate inclination angle 6
on the stability characteristics can be deduced by
examining the solid curves of Fig. 1. If note is
taken of the factor tan # which appears in the
abscissa variable, it is apparent that the greater
the inclination angle, the more susceptible is the
flow to the vortex-type instability being in-
vestigated here. On the other hand, since tan 6
approaches zero as @ approaches zero, flows
adjacent to plates that are either vertical or
nearly vertical are very stable with respect to vor-
tex-type instabilities, and it is highly like that
other forms of disturbance (e.g. plane waves) are
responsible for the breakdown of laminar flow.
These findings are in accord with experiment { 7].

The minimum values of Rtan @ are 235,
26-7 and 29-6, respectively for Pr = 67, 2 and
0-733. This is a remarkably small spread.

considering the order of magnitude variation
in the Prandtl number. By taking the fourth
powers of the respective results for R tan 8 and
multiplying by the corresponding Prandtl
numbers, it is seen that the Grashof-Prandtl
products are by no means constant. Actually. in
the range investigated, the numerical values of
the critical Grashof number depend less on
Prandtl number than do the Grashof-Prandti
products (i.e. Rayleigh numbers).

Whereas a wave number—Revnolds number
diagram, such as Fig. 1, is a common vehicle
for presenting stability results. it has some
major deficiencies. First, the non-dimensional
wave number is not, in itself, a measured
quantity ; rather, it is the wavelength A which
can be determined from experiment. Second.
the streamwise coordinate x appears in both the
ordinate and abscissa variables, so that it 1s
difficult to examine how disturbances of given
wavelength behave as they move in the stream-
wise direction.

To facilitate an alternate presentation which
avoids these drawbacks, it is convenient to
define a characteristic length I* which is a
constant in each particular physical situation

I* = [Bgcos AT, — T, )]+ (48)
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F1G. 2. Neutral stability diagram, wavelength vs Reynolds number

Since A = 2n/a, it is easily shown that

A 3 2n(R tan 0)*

* tan’ 0 = 7 .
With the aid of equation (49), the ah, Rtan 6
diagram (Fig. 1) can be transformed into a
diagram of A(tan * 6/I*) vs R tan 6.

A plot of the neutral stability curves in such a
diagram is given in Fig. 2. As before, the neutral
curves have an altogether different character
depending upon whether the non-parallelism of
thebasicflowis takenintoaccount or suppressed.

(49)

125 - —

100+

o P

7 ton@

25 -

o | I L I | I
0 20 40 €0

8, deg

F1G. 3. Vortex instability data of [7], Rtan§ vs 6.

The experimental instability results of [ 7] will
now be examined. The instability that was
investigated resulted from natural disturbances.
The experiments were performed using a heated
plate situated in water, and instability was
identified by the first appearance of vortex lines
made visible by an electrochemical reaction. It
was not possible to estimate the amount of
amplification which might have occurred prior
to the first appearance of the lines.

The vortex instability data of the experiments,
encompassing six angles of inclination between
20 and 60 degrees, are shown in Fig. 3. For each
angle of inclination, the mean value of many
repeated readings is indicated along with the
corresponding standard deviation. The mean
values of R tan 6 ranged from 80 to 109. On the
other hand, from the analytical results (Figs. 1 or
2), the value of R tan @ at the critical point is
about 24 for the mean Prandtl number of about
5-5 encountered in the experiments. The critical
value of R tan @ is substantially lower (by a
factor ofabout four) than that marking detectable
instability in the experiments of [7]. This is in
accord with all known results for natural
disturbances in boundary layer flows, where
appreciable amplification is necessary before
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any disturbances can be detected (e.g. [8],
p. 507). Due to the scatter of the points in Fig. 3.
no clear conclusion can be made about the
validity of using R tan 6 as a correlating para-
meter for the onset of instability.

There is no information given in [7] about
the wavelengths of the observed vortex lines.
Fragmentary information is reported in [1].
from which the present authors have calculated
three values of A(tan* 6/I*). namely 18, 19 and
24. From Fig. 2, the value of A(tan® 6/I*) lies in
the range 17-18 for the Prandtl numbers of the
experiment. This level of agreement between the
critical wavelength and the experimentally ob-
served wavelengthis surprisingly good, especially
in view of prior lack of agreement for other
naturally disturbed boundary layer flows [8-10].

Sufficient data are not available to fully
affirm the validity of the correlation A(tan® 6/*)
= constant at the onset of instability. If the
correlation holds, then A ~sin™*4 and
A ~(AT)"%. The examination of these
dependencies of A on § and on AT awaits further
experiments.

Finally, one last observation will be made.
In Fig. 4, the mean values of R from [7] are
plotted as a function of the inclination angle 6.
At inclinations of —10, 0 and 10 degrees, the
observed instability was of the travelling wave
type, whereas for larger angles, vortex instability
was observed. It is seen that the points fall very
nearly on a straight line. The fact that the data
from both types of instability lie on a continu-
ous straight line raises the possibility that the
two instability types may coexist for a substantial
range of angles. It remains for future experi-
ments involving hot-wire equipment to exam-
ine the just-discussed possible coexistence. A
simple empirical formula for the observed
onset of instability can be given as R = 330 —
4.85 @ for Pr = 5-5. Also shown in the figure is a
line R tan @ = 24, which represents the critical
Reynolds number for a Prandtl number of 5-5.
The angular dependence of the critical Reynolds
number curve is, evidently, very different from
that of the experimental data.
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CONCLUDING REMARKS

There is a certain similarity between the
present problem and the problem of forced
flow on curved plates, first treated by Gortler
{11]. In the latter problem, the disturbances are
in the form of Tollmien—Schlichting waves for
zero and small values of the curvature. For
larger values of positive curvature (concave
plate), the disturbances observed are no longer
in the form of travelling waves but are in the
form of steady longitudinal vortices (Gortler
vortices). The instability in the latter case is due
to the centrifugal force normal to the plate,
which can be regarded as a body force.

For the Gortler problem, Himmerlin [12].
correcting the calculation of Gortler, also
obtained a minimum value of the stability
parameter (Gortler number) at a zero wave
number. In a later paper {13], he found that the
minimum Géortler number occurs at a non-zero
wave number when a term connected with the
curvature is included. This term was neglected
at first because it is small in comparison with
another term inside the boundary layer. How-
ever, in the outer portion of the boundary layer
and outside the boundary layer, this was no
longer true. Therefore, the neglect of this term
was not uniformly valid throughout the entire
domain of the problem. Himmerlin’s finding is
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another example of a non-uniform approxi-
mation whose impact is more and more strongly
felt as the wave number approaches zero.
See also [14] for further comments on this
approximation.

A question might arise as to the possibility of
using linear stability theory to predict a critical
angle {or range of angles) at which the distur-
bances change their character from travelling
waves to longitudinal vortices as suggested by
the experiments in [7]. Presumably, if one can
obtain the value of R for the onset of instability
as a function of angle of inclination for both
types of disturbances, then one might assume
that for any angle the disturbance with the
lowest R value would be the one observed.
However, as discussed above, in the case of
natural disturbances there appears to be no
correlation between the observed onset of
instability and the critical R value of the neutral
curve. Thus, the critical Reynolds number
cannot be used for prediction of observed
instability. If amplification curves were to be
obtained, one could find the range of wave-
lengths that are amplified most strongly. How-
ever, there still is no rational way of deciding
at which value of Reynolds number one might
expect to observe instability in the presence of
natural disturbances. Therefore, it seems im-
probable that the critical angle can be predicted
theoretically, at least by treating each type of
disturbance separately. A more promising ap-
proach to achieving such a prediction would be
to treat the case in which the disturbances
contain both longitudinal vortices and travelling
waves.
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APPENDIX

The Basic Flow and Temperature Solutions
With the usual boundary layer assumptions, the governing
equations for natural convection adjacent to a heated,
inclined, upward-facing plate are (e.g Kierkus [6])

ax Oy ' '
au ou 1ép
Une+ Voo = — - 2= - T
=+ 5 pax+ﬁgcosﬂ('l” T.)
2V
oy’
i¢
0= ——E—E -+ ﬁgsin G(T"' Tm)’ (A'3)
p oy
8T _&T &T
U+ Ve =a-—s, -
6x+ ay “ayz 9

where, as noted in connection with equation (1), p is the
difference between the static pressure and the hydrostatic
pressure ( p = 0 outside the boundary layer).



2366

With a view toward estimating the magnitude of the
pressure gradient Jp/dx in equation (A.2), one can first
estimate p from equation (A.3) as

2~ pBgsin AT T,),

where ¢ is the boundary layer thickness. Furthermore, if
Cp/dx ~ p/x, then

(A5

tdp o .
-~ ~-BgsinXT~T,).
plx x

(A.6)
Taking the ratio of this quantity to the buoyancy force in
equation (A.2) yields (§/x) tan  and, since §/x ~ 1/Grt ~ 1/R.
the ratio becomes (tan6)/R. As long as tan6 ~ | and
R » 1, the pressure gradient term in equation (A.2) can be
neglected compared with the buoyancy term.

The similarity solution for the system (A.1), (A.2) with
&p/éx omitted, and (A.4) can be expressed as indicated in
equations (13) and (14), where

U*(x) = dve?xt, hix) = x¥/c,

c = [Bgcos KT — T )/4v?]%
Om =F, Viny=(@F 3P, T = H.

(A7)
(A.8)
(A9)
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The functions F(n) and H(n) are the solutions of
F" +3FF' =2F*4+ H=0 H'+3PrFH =0.
FIO) = F(0) = F(wo) = H(eo) = 0. H(0) = 1.

(A.1O)
(A.11)

Equations (A.10) and (A.11) are readily recognized as the
familiar governing equations for the vertical plate problem.

There are many numerical solutions of the system (A.10),
(A.11) in the literature. A more efficient solution method for
such systems was devised by Haaland ([4], Chapter 6), the
main feature of which is the replacement of the given
boundary conditions at n = yx with other boundary
conditions at a finite value of 7.

Asymptotic solutions for F and H that are valid at large
values of 5 can be developed as follows

Fin) = F, + G~ 3F=" & G e~ 3F=Prm (A.12)
Hin) = Gqe~ 3 =P {A.13)

where G, and G; are related by
Gy = (3PrF )% (1 ~ /PN G,. (A.14)

The constants F, Gy, G, and G, were evaluated by employ-
ing the numerical solutions of equations (A.10) and (A.11).

INSTABILITE TOURBILLONNAIRE DE LA CONVECTION NATURELLE SUR
DES SURFACES INCLINEES

Résumé—On ¢tudie la stabilité linéaire de la convection naturelle laminaire adjacente i une plaque
chauffée, inclinée, 3 face tournée vers le haut, pour des perturbations ayant lz2 forme de tourbillons
longitudinaux. Le probléme de stabilité est formulé en tenant compte du fait que les champs de 'écoulement
principal et de température dépendent des coordonnées.

Une des conséquences démontrées de la conservation de la vitesse transverse de 'écoulement fondamental
est 'effet appelé de mise en bouteille, on la vitesse de perturbation et la température sont contenues dans
les couches limites respectives de 1'écoulement fondamental. Les courbes de stabilité neutrc calculées
montrent nettement un caractére différencié suivant que la dépendance des champs de I écoulement de base
et de température est prise en compte ou supprimée; les valeurs du nombre de Grashof pour les deux
modéles différent de plusieurs ordres de grandeur. Les résultats montrent aussi que pius I'inclinaison de la
plaque est grande 4 partir de la verticale, plus I'écoulement est sensible 4 I'instabilité de type tourbillonpaire.
On discute P'expression analytique des résultats a partir des informations disponibles sur les expériences.

WIRBEL-INSTABILITAT BEI NATUR_I:,ICHER KONVEKTION AN
GENEIGTEN FLACHEN

Zusammenfassumg —Die lineare Stabilitit der laminaren natlirlichen Konvektions-Strdmung an einer
erwidrmten, geneigten nach oben gerichteten Heizfliche wird fiir Strémungen untersucht, die die Form
langslaufender Wirbel haben. Das Stabilitdtsproblem wird unter Beriicksichtigung der Tatsache
dargestellt, dass die Grundstrédmung und das Temperaturfeld von der stromw&rts gerichteten Koordinate
abhiingt. Eine der dargestellten Folgen beim Festhalten der Quergeschwindigkeit der Grundstrdmung
ist der sogenannte Flascheneffekt, wobei Stromungsverwirbelung und Temperatur durch die betreffende
Grenzschicht der Grundstrémung erfasst werden. Die errechneten Kurven indifferenter Stabilitit zeigen
grundsitzlich unterschiedliches Verhalten, je nachdem, ob die Abhiingigkeit der Grundstrdmung und der
Temperaturfelder in Stromungsrichtung beriicksichtigt oder vernachlassigt wird. Der Wert der kritischen
Grashof-Zahl beider Modelle differiert um einige Grassenordnungen. Die Ergebnisse zeigen auch, dass
mit zunchmender Neigung der Platte gegeniiber der Senkrechten dic Empfindlichkeit der Strémung
hinsichtlich der Wirbel-Instabilitit steigt. Der Vergleich der analytischen Resultate mit verfligbaren
experimentellen Aussagen wird erdrtert.
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BUXPEBAfl HEVCTONYUBOCTb IPU ECTECTBEHHON KOHBEKIUHU V
HAKJIOHHbBIX IIOBEPXHOCTEN

Amrmotamma—IVcenenyerca auHefinaA yCTONYMBOCTD JAMMHADHOTO NOTOKA ApPH eCTeCTBEHHOR
KOHBEKUMU Hal HarpeToll HaKIOHHOM NIACTHHON B CiIy4ae BOBMYHIEHMIt B BHJe MPOXOJBHHIX
BUXpeif. 3afaYa yCTOMYMBOCTH GOPMYJMpPYETCA C y4eTOM 3aBHCHMOCTHM OCHOBHOTO HOTOKA
W TEeMIIEpaTYpHOro NOJA OT KOOPAWHATH, HANpaBlieHHOW BRoNbL TedeHus. Ilokasamo, |ro
OIHMM U3 YCIOBH COXpaHEHNA NONepeIBolt CKOPOCTH OCHOBHOTO MOTOKA ABIAETCA CUTYAIMA,
KOTla BUXpHM BOBMYINEHWs M TeMOepaTypa BOSMYIIeHMA B8aKJIKW4YeHH B COOTBETCTBYIOMMX
NOrpaHMYHHX CAOAX OCHOBHOrO NOTOKA. PacyeTHHeE HelTpaJbHHE KPUBHeE YCTOHYMBOCTH
B LEJIOM MMEIOT Pa3IM4HKIA XapaKTep B 3aBHCHMOCTH OT TOrO, YYMTHBaeTCH WK npeHeGpe-
raeTca B3aBHCHMOCTHI0 OCHOBHOTO MOTOKA H TeMNepaTYPHHX MoJdeit OT NpOXOAbHOU
KOODAMHATH ; BEJMYMHA KPUTUYeCKNX uucen ['pacroda maA ABYX Mofenell OTANYAETCR Ha
HECKOJHKO NOPANKOB. Pe3yibTaTH TaKie MOKASHBAKT, YTO 4eM GOdblle NJIACTHHA OT
KIOHAGTCA OT BepTHKaiM, TeM (ojlee BOCIPUMMYMB NOTOK K BUXPEBON HeyCTOMYMBOCTH.
IIpuBoauTcs comocTaBieHMe pesyikTATOB AHAJNBA C MMEIONIMMHUCA IKCNEPHMEHTAIHHHIMH
NaHHBIMU.
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